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ABSTRACT: Geostatistical methods are essential in accurate mineral resource 
estimation, as they account for spatial correlations and uncertainties. This study 
evaluates the mineral resource of the Gofolo Hill deposit in Western Liberia 
using the ordinary kriging method, and in addition, applies two traditional 
estimation methods, the inverse distance weighting method and the nearest 
neighbor polygon method, for comparative analysis. The study uses 39 reverse 
circulation drill holes with 200m x 60m grid spacing. The ordinary kriging method 
estimated a resource of 17.169 million tonnes with an average grade of 35.90%. 
In comparison, the inverse distance weighting method estimated 16.975 million 
tonnes at an average grade of 35.53%, while the nearest neighbor polygon 
method estimated 14.757 million tonnes at an average grade of 38.55%. The 
results show that the ordinary kriging method provides the most accurate 
estimates, followed by the inverse distance weighting method, with the nearest 
neighbor polygon method showing the least precision. The findings emphasize 
the importance of a geostatistical approach in resource estimation and support 
their application in mineral evaluation. 
KEY WORDS: Iron ore, Gofolo Hill, Resource estimation, Ordinary Kriging, Inverse 
Distance Weighting, Nearest neighbor polygon. 

RÉSUMÉ:  Les méthodes géostatistiques sont essentielles pour une estimation 
précise des ressources minérales, car elles prennent en compte les corrélations 
spatiales et les incertitudes. Cette étude évalue les ressources minérales du 
gisement de Gofolo Hill, situé dans l’ouest du Liberia, en utilisant la méthode du 
krigeage ordinaire, tout en appliquant deux méthodes d’estimation 
traditionnelles – la méthode de pondération inverse de la distance et la méthode 
des polygones du plus proche voisin – à des fins de comparaison. L’étude 
s’appuie sur 39 forages à circulation inverse, espacés selon une maille de 200 m 
x 60 m. La méthode du krigeage ordinaire a permis d’estimer une ressource de 
17,169 millions de tonnes avec une teneur moyenne de 35,90 %. En 
comparaison, la méthode de pondération inverse de la distance a estimé 16,975 
millions de tonnes avec une teneur moyenne de 35,53 %, tandis que la méthode 
des polygones du plus proche voisin a estimé 14,757 millions de tonnes avec une 
teneur moyenne de 38,55 %. Les résultats montrent que le krigeage ordinaire 
fournit les estimations les plus précises, suivi par la méthode de pondération 
inverse de la distance, la méthode des polygones montrant la précision la plus 
faible. Ces résultats soulignent l’importance d’une approche géostatistique dans 
l’estimation des ressources et confirment son utilité dans l’évaluation minière. 

MOTS CLÉS:  Minerai de fer, Gofolo Hill, Estimation des ressources, Krigeage 
ordinaire, Pondération inverse de la distance, Polygone du plus proche voisin. 
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1. Introduction 
 
Historically, with four operational iron ore mines in the 1960s producing 15 million tonnes of iron 
ore, Liberia became Africa's top iron ore producer and one of the world's leading iron ore exporters 
(Swindell, 1965, 1967). By 1980, production increased to 20 million tonnes of iron ore (Wright, 
1986). Thereafter, production significantly declined up to the start of the Liberian civil war in 1989, 
which led to the closure of major mining operations (Gunn et al., 2018). The civil war lasted for 
fourteen years and ended in 2003. A transitional political period from 2003 to 2005 set the pace 
for establishing a democratically elected government in 2006. Since the end of the war, Arcelor 
Mittal has been the sole producer of iron ore in Liberia, commencing production in 2011 and 
increasing output to approximately 5 million tonnes by 2021, ranking Liberia the world's 24th 
largest iron ore producer (Idoine et al., 2024). This research is motivated by the need to explore 
multiple iron ore deposits in Liberia, evaluate their resources to inform feasibility studies, and 
advance projects from exploration to exploitation, thereby enhancing Liberia's iron ore production 
and economic development.  

Mineral resource estimation plays a critical role in progressing from mineral exploration to 
commodity production (Jowitt & McNulty, 2021). Mineral estimation, made possible through the 
interpretation of quality geological data and economic considerations, determines the viability of 
a mineral deposit. Precision and accuracy are paramount in mineral resource estimation to avoid 
unrealistic financial expectations, as these estimations underpin mining operations (Abuntori et 
al., 2021; Jafrasteh et al., 2018; Jones et al., 2018; Truong et al., 2019). 

Mineral resource estimation has evolved significantly since its inception in the early 1900s. Initially, 
simpler techniques such as the classic polygonal method were employed. Over time, more 
advanced methods like inverse distance weighting (IDW) and more robust geostatistical kriging 
were developed, bringing greater precision and reliability to resource estimation.  

The traditional methods - nearest neighbor polygon (NNP) and inverse distance weighting (IDW) - 
also referred to as deterministic methods are widely used during the early stage of mineral 
resource estimation because of their simplicity and speed. These methods assume that nearby 
points have a stronger influence on interpolated values than distant points (Eldeiry et al., 2011; 
Webster & Oliver, 2007). The inverse distance weighting (IDW) method uses distance-weighted 
averages to estimate unknown values, while the nearest neighbor polygon (NNP) method assigns 
the value of the closest sampled point to the unknown point. However, these methods fail to 
account for spatial relationships among data points and cannot quantify estimation uncertainty, 
often leading to subjective resource assessments (Muktibodh, 2014).  

Geostatistical methods address these limitations by incorporating spatial relationships and 
quantifying estimation uncertainty (Ali Akbar, 2012; Rossi & Deutsch, 2014). The geostatistical 
kriging method uses a semi-variogram to model spatial relationships, enabling more accurate and 
unbiased resource estimates (Boroh et al., 2022; Coletti et al., 2022; De Carvalho & Da Costa, 2021; 
Guo et al., 2022; Kumar et al., 2023). By minimizing error variance, kriging also provides estimates 
with a measure of prediction uncertainty. Geostatistical estimation is based on the theory of 
Regionalized Variables (variables with geographical location, spatial position, and correlation), 
which Prof. Georges Matheron, (1963, 1965, 1971) developed based on the practical work carried 
out by Krige (1951) in determining the ore grades from drill cores in a South African gold mine.  

The geostatistical ordinary kriging (OK) method, inverse distance weighting (IDW) method, and 
nearest neighbor polygon (NNP) method are grade interpolation methods widely used for mineral 
resource estimation, validation studies, and comparative analysis (Afeni et al., 2021; Bargawa & 
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Tobing, 2020; De-Vitry, 2003; Gong et al., 2014; Kasmaee et al., 2010; Mallick & Choudhary, 2019; 
Shahbeik et al., 2014). Research comparing these methods has yielded mixed results. In some 
studies, the IDW is superior to ordinary kriging geostatistical methods (Eldeiry et al., 2011; 
Moghaddam et al., 2018; Nalder & Wein, 1998; Spokas et al., 2003; Weber & Englund, 1992), while 
others suggest that geostatistical ordinary kriging provide superior estimation (Abed et al., 2014; 
Buchanan & Triantafilis, 2009; Kimleang et al., 2017; Mallick & Choudhary, 2019; Milillo & Gardella, 
2008; Shahbeik et al., 2014; Yasrebi et al., 2009).  

This study focuses on three main objectives. First, it aims to model the orebody implicitly. Second, 
it evaluates the Gofolo Hill iron ore deposit in Western Liberia using the geostatistical ordinary 
kriging method. Third, it compares the accuracy of the OK method with the IDW and nearest 
neighbor polygon methods, providing valuable insights into the strengths and limitations of these 
approaches for mineral resource estimation. 

 

2. Study Area 

 

2.1 Location 

The study area, Gofolo Hill, is located in Western Liberia, Grand Cape Mount County, between 
latitudes 6°52ʹ46ʺ N and 6°53'11ʺ N and longitudes 11°14ʹ19ʺ W and 11°13ʹ25ʺ W (Figure 1). It lies 
approximately 80km northwest of Liberia's capital, Monrovia, and 20km from the nearest coastline 
(Klah-Wilson, 2023).  

The Gofolo Hill, along with two other deposits (Zaway and Koehnko), is aligned along a mineralized 
strike that includes the historic Bomi Hills iron ore mine (about 25 km) and Bong Range iron ore 
mine (about 80 km) (Figure 2) (Klah-Wilson, 2023).  

 

2.2. Geological setting 

The Gofolo Hill deposit is situated along the regional northwest trending Todi Shear zone on the 
edge of the West African craton (Figure 2). The West African craton comprises Precambrian-aged 
rocks – the primary geological setting of iron ore deposits worldwide. The Todi shear zone forms 
the boundary between the Liberian age province (2.8 – 3.3 Ga) of Archean age rocks in the north 
and the Pan African age province (500 Ma) of younger rocks along the Liberian coast (Gunn et al., 
2018; Klah-Wilson, 2023).  

Iron mineralization in the area is attributed to itabirite, an indication of banded iron formation (BIF) 
that has undergone regional metamorphism (folding and faulting) and recrystallization. The 
mineralization has been shaped due to three major tectonothermal deformation events (Gunn et 
al., 2018; Hadden, 2006; Klah-Wilson et al., 2023; Kromah, 1974) -  

1. Liberian orogeny (2.8 – 3.3 Ga) - responsible for the initial infolding and recrystallization 
of Banded Iron formation into itabirite, 

2.  Eburnean orogeny (2.1 – 2.2 Ga) - responsible for compression and refolding of itabirite, 
and  

3. Pan-African orogeny (500 Ma) - responsible for further recrystallization and coarsening of 
itabirites 

The iron ore mineralization at Gofolo Hill consists mainly of hematite and magnetite within coarse-
grained itabirite, indicative of high-grade potential (Gunn et al., 2018). The itabirite is of both oxide 
and silicate type and is likely of Archean or Paleoproterozoic origin. Additionally disseminated 
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magnetite with sedimentary sequence (interbedded metasediments) also forms part of the 
deposit. The Gofolo Hill deposit is underlain by the granitic gneiss basement of the stable West 
African Craton. 

 
Figure 1 Location map of Gofolo Hill Iron Ore Deposit in Grand Cape Mount County, Western Liberia. 

 
Figure 2 Regional geological map of Liberia showing rock types, age provinces, and notable iron ore 
deposits and occurrences including the Gofolo Hill iron ore deposit in Western Liberia. 
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3. Samples and Methods 
 

3.1. Samples and Database 

Thirty-nine (39) reverse circulation drill holes, spaced at 200 m x 60 m were used in this study for 
mineral resource modeling and estimation (Figure 3). The drill holes have depths ranging from a 
minimum of 42 m to a maximum of 156 m, with an average depth of 87.9 m. Thirty-six (36) of the 
holes were drilled at a 50-degree dip, while three were drilled vertically (90-degree dip). All holes 
were surveyed using the UTM WGS_29N coordinate system. Only the iron (Fe) content 
concentration in the samples' geochemical analysis was used in this study.  

The geological database, comprising of relatable tables containing drillhole records, was created, 
validated, and composited at 2m intervals. The database includes four primary tables: collar, 
survey, assay, and geology. The collar table contains location data, the survey table includes 
orientation details, the assay table records the iron (%Fe) elemental analysis, and the geology table 
contains the drillhole rock types. 

 

3.2. Data Processing Software 

Microsoft Excel: used for pre-processing the collar, survey, assay, and geology tables to ensure 
data accuracy and consistency. 

ESRI ArcGIS 10.8.2: utilized to produce a location map and a regional geological map of the study 
area and Liberia. 

Datamine Studio RM 1.13: employed for data analysis, 3D modeling, and resource estimation. 

 

3.3 Data Preprocessing 

Effective resource estimation depends heavily on the quality and reliability of data from drilled 
samples. Prior to applying geostatistical estimation methods (e.g. ordinary kriging) or deterministic 
methods (e.g. inverse distance weighting and nearest neighbor polygon), it is important to 
thoroughly preprocess data to remove errors, ensure data consistency, and enhance statistical 
validity (Dash et al., 2023; Vinutha et al., 2018).  

The raw datasets of the Gofolo Hill iron ore deposit, comprising of collar, survey, geology, and assay 
tables were inspected for missing values, duplicates, and typographical errors. Outlier detection 
was conducted using multiple descriptive statistics such as mean, standard deviation, skewness, 
kurtosis, and the interquartile range (IQR) method. The interquartile range (IQR) is calculated using 
Equation (1): 

3 1IQR Q Q= −  (1) 

Where:  

IQR is the interquartile range, Q1 is the first quartile (25th percentile), and Q3 is the third quartile 
or 75th percentile.  

The lower or upper fences are determined by the Equation (2) and Equation (3): 

1 1.5*Lower fence Q IQR= −  (2) 

3 1.5*Upper fence Q IQR= +  (3) 

Values below the IQR lower bound (lower fence) or above the IQR upper bound (upper fence) are 
considered outliers. 
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Although deterministic methods such as inverse distance weighting (IDW) and nearest neighbor 
polygon (NNP) do not necessarily require data normality, geostatistical methods like ordinary 
kriging require that the input data are normally distributed. Normality assessment of the data was 
made through analysis of raw data statistics (coefficient of variation, standard deviation, skewness, 
kurtosis, mean, median) as well as histogram. 

 

3.4. Resource estimation or interpolation methods 

The geostatistical ordinary kriging (OK) method, and two non-geostatistical methods, the inverse 
distance weighting (IDW) method, and the nearest neighbor polygon (NNP) method, were used to 
estimate the iron ore deposit of the Gofolo Hill. Ordinary kriging estimation is generally based on 
a variogram analysis to quantify spatial relationships and make better estimates (Boroh et al., 2022; 
Coletti et al., 2022; De Carvalho & Da Costa, 2021; Guo et al., 2022; Kumar et al., 2023). The 
ordinary kriging spatial interpolation method is noted for providing minimum error variance 
(Yamamoto, 2005). The IDW and NNP are two deterministic methods that predict unknown values 
based on closeness or distance to known points. 

3.4.1. Geostatistics 

Geostatistics works best with spatially correlated samples to classify the deposit's natural 
characteristics and mineralization trend. The most commonly used geostatistical method is the 
ordinary kriging method (Lefohn et al., 1988), which is selected for this study. Ordinary kriging 
interpolation utilizes a semi-variogram to generate the best linear unbiased estimate (BLUE) at 
each location (Ali Akbar, 2012; Boroh et al., 2022; Klah-Wilson et al., 2023; Mallick & Choudhary, 
2019; Negreiros et al., 2010). A semi-variogram is configured by comparing one sample value to all 
others at constantly increasing intervals or lags. The semi-variogram is computed using Equation 
(4) (Abuntori et al., 2021).  

2

1

1
( ) [ ( ) ( )]

2

n

i i

i

h Z X Z X h
=

= − +  (4) 

Where: 

y(h) is the semivariogram, Z(Xi) is the grade at a point (Xi) in space, Z(Xi+h) is the grade at another 
location (lag distance), and n is the pairing number. 

Once the semi-variogram is modeled, grade interpolation and estimation are done using the 
geostatistical ordinary kriging method. 

The general equation for ordinary kriging estimation is calculated using Equation (5) (Boroh et al., 
2022) 

1

* ( )
n

i i

i

Z Z x
=

=  (5) 

Where: 

 Z* is the estimated value, λ is the sample weight coefficient, and Z represents the individual values 
at sample points.  

 

 

The weights must equal 1 to fulfill the unbiased situation (Boroh et al., 2022). 
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The kriging weights are obtained by the system of equations that relates the semi-variogram values 
between sample points: 
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3.4.2. Inverse Distance Weighting 

The inverse distance weighting (IDW) method can evaluate deposits with a wide range of grade 
variability, from low to high-grade variability. It applies a weighting factor based on an inverse 
distance function of each sample with a set of known sample values about the central point of an 
unknown ore block (Klah-Wilson, 2023; Rahman et al., 2010). A general assumption is grounded in 
the First Law of Geography, which states that a sample value would decrease as one moves away 
from a point and increase as one moves toward that point (Eldeiry et al., 2011; Webster & Oliver, 
2007). The IDW method is a function of distance but uses the inverse of the distance to interpolate 
unknown points, hence the name, inverse distance weighting method. Typically, the power 
functions of 2 and 3 are commonly used, with this study utilizing a power of 2.  The  general 
mathematical formula for the IDW method is given in Equation (8) (Rossi & Deutsch, 2014): 

1

1

*
1

n

i

n

i i
n

n

i i

Z

d
Z

d

=

=

=




 (8) 

Where: 

 Z* is the estimated value, Zi is the value of the sample at location i; di is the separation distance 
from point i to the point of reference, and n is the power index (a positive integer).  

The value of "n" is chosen arbitrarily but is often based on the type of deposit being dealt with. 

3.4.3. Nearest Neighbor Polygon 

The nearest neighbor polygon (NNP) method is amongst the simplest and straightforward 
interpolation techniques for calculating unsampled locations. It is the most common computerized 
polygonal method. The nearest neighbor polygon method operates by predicting the attributes of 
unsampled points or blocks by assigning values directly based on grade from a nearby point or 
block. This means only one point or the nearest sampled point value is assigned to the point that 
is being estimated. The NNP method is mainly useful in situations where other robust interpolation 
methods are not effectively applicable in predicting or estimating the outcome of data (Klah-
Wilson, 2023). Additionally, it can be used as a complementary method to show that the robust 
interpolation methods of estimation are within an accepted range, thus proofing their precision 
and accuracy. The mathematical representation of the NNP method is provided in Equation (9). 

* nearestZ Z=  (9) 
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Where: 
Z* is the estimated value at the unsampled location, and  
Znearest is the grade at the nearest sample point 
 

3.5. Cross Validation 
To validate the ordinary kriging interpolation method, the slope of regression histogram was used 
to compare estimated grade values with the actual grade value. The goal is to have a mean slope 
or value of 1 or nearly 1. Conditional bias occurs if the mean slope value is less than 0.5 
(underestimation) or greater than 1.5 (overestimation). Cross validation of the three methods was 
performed using the global mean grade difference values, coefficient of variation, and calculated 
standard error. The standard error is given by the Equation (10). 

SE
n


=  (10) 

Where SE is the standard error; σ is the sample standard deviation, and n is the number of samples. 
 

4. Results and Discussion 
 
4.1. Statistical Analysis 

Statistical analysis of 39 drill holes is shown in Table 1, with their location shown in Figure 3. The 
dataset consists of 1525 samples. The minimum and maximum Iron (Fe) grade are 0.94% and 
60.32%, respectively. The mean grade is 20.46%, while the median is 19.21%. The interquartile 
range (Q3 – Q1 or 75th percentile – 25th percentile) is 20.90. Based on the interquartile method, 
the lower bound and upper bound were calculated as -22.05 and 61.53, respectively, suggesting 
that the dataset contains no extreme values or outliers. 

The coefficient of variation (CV) and standard deviation are 0.62 and 12.77, respectively, indicating 
minor variability in the dataset. A CV value below 1.5 supports the assumption of a single domain 
for modeling and estimation while a CV above 1.5 would suggest the need for multiple domains to 
achieve accurate resource estimates. The skewness value of 0.49 indicates a mildly right skewed 
data, with a slightly longer tail on the right-hand side of the distribution. Skewness values between 
-0.5 and +5 are generally considered approximately symmetrical. The kurtosis value of -0.47 
suggests a platykurtic distribution, meaning the data has lighter tails and flatter peak in comparison 
to a perfectly normal distribution. A kurtosis value close to zero (-0.47 in our case) and not highly 
negative or positive suggests approximate normality. Together, the low coefficient of variation (CV) 
value, the skewness and kurtosis close to zero, the mean and median with small difference, and 
the histogram (Figure 4) further prove that the data distribution approximates a normal 
distribution. Summary statistics are shown in Table 1. 

 

4.2. Variography 

A variogram is needed for geostatistical ordinary kriging estimation to show the spatial relationship 
or variability among data (Boroh et al., 2022; Coletti et al., 2022). It also shows whether the deposit 
is isotropic or anisotropic. Experimental variograms were computed for Fe and fitted against a 
spherical theoretical model. The spherical model is the most common variogram model in 
geostatistics. The variogram analysis revealed that the Gofolo Hill deposit exhibits anisotropy 
because the range values differ in different directions. A mild anisotropy is shown in the horizontal 
direction (X vs Y) while a clearer anisotropy is shown between horizontal and vertical directions 
(X/Y vs Z). Parameters of the semi-variogram fitted using a spherical model are shown in Table 2. 
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The variogram models (Figure 5) with azimuth 0° (north-south direction) and azimuth 90° (east-
west direction) were applied for grade interpolation. 

 
Table 1 Summary statistics of raw data. 

 

 

 
Figure 3 Spatial distribution of drillholes across the Gofolo Hill iron ore deposit showing collar positions 
used for geological modeling and resource estimation. 

 

Parameter Value 

Total Samples 
Minimum 
Maximum 

Mean 
Median 

Coefficient of Variation 
Standard Deviation 

Skewness 
Kurtosis 

25th Percentile 
50th Percentile 
75th Percentile 

1525 
0.94 

60.32 
20.46 
19.21 
0.62 

12.77 
0.49 
-0.47 
9.28 

19.21 
30.18 
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Figure 4 Histogram showing the frequency distribution of iron (Fe) grades from drill hole samples at 
Gofolo Hill. 

Table 2 Parameters of a single structure spherical variogram model showing anisotropy. 
Type Nugget Sill Range 

(X) (Y) (Z) 

Spherical Model 35.82 126.72 83.50 71.40 58.40 

 
 

 
Figure 5 Illustration of experimental variogram fitted with theroretical variogram. A) variogram model 
with azimuth 0° or north-south direction B) variogram model with azimuth 90° or east-west direction. 

 

4.3. Geological Model and Block Model 

A 3D geological model was constructed to visualize the extent and shape of the orebody below the 
surface. To differentiate ore from waste, a 30% Fe grade cut-off was applied. The ore was modeled 
carefully after the 30% grade cut-off threshold. Referencing a drill hole spacing of 200m x 60 m, a 
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block size of 50m x 20m x 5m (Figure 6)was chosen for block model and estimation, aligning with 
David's (1977) guideline that block size should range from ¼ to ½ of the drill hole spacing. 

An implicit 3D geological modeling approach was preferred over the explicit approach due to its 
dynamic ease of update and efficiency. Unlike the explicit method, which requires significant time 
for manual cross-section compilation, the implicit method allows updates and adjustments. The 
geographical extent and cell size of the block model are presented in Table 3. 

To validate the block model precision and accuracy, the volume of the geological model was 
compared to that of the block model. The percent difference was 0.29% (Table 3), which is well 
below the 2% maximum threshold, confirming the accuracy and reliability of the 3D geological and 
block models. 

 
Table 3 Block model properties showing geographical extent, cell size, and validation details. 

Model size  Validation of geological model and block model 

 Cell 
size 
(m) 

Min (m) Max (m) Cell 
count 

 Geological 
model  

Volume  
(m3) 

Block  
model 

volume  
(m3) 

Volume 
Diff 

 (m3) 

(%) 
Diff 

X 
Y 
Z 

50 
20 
5 

252506.5 
760908.10 

-135.42 

254156.5 
761888.10 

179.58 

33 
49 
63 

101,871 

 6,248,455.49 6,230,099.17 18,356.31 0.29 

 
 

 
Figure 6 A plan view of the block model generated from 3D geological model of Gofolo Hill deposit. 
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4.4. Estimation of Resource 

Three interpolation methods-geostatistical ordinary kriging (OK), inverse distance weighting (IDW), 
and nearest neighbor polygon (NNP)-were employed to estimate the grade, volume, and tonnage 
of the Gofolo Hill Iron ore deposit. The resource estimation includes calculating the ore's grade, 
volume, and tonnage. The resource estimation utilized a global cut-off grade of 30% Fe and a bulk 
density of 3.0 kg/m³ to interpolate the ore blocks. Both the cut-off grade and bulk density are 
critical factors in resource estimation: the cut-off grade represents the minimum ore grade at 
which mining and processing are economically viable (Rendu, 2014), while bulk density, defined as 
the ratio of mass to volume, is essential for calculating tonnage (Clout & Manuel, 2015). 

The ordinary kriging (OK) method, which incorporates spatial relationships and trends in sample 
data through semi-variogram parameters, estimated the deposit at 17.169 million tonnes with an 
average Fe grade of 35.90%. The inverse distance weighting (IDW) method produced a comparable 
estimate of 16.975 million tonnes at an average grade of 35.53% Fe. In contrast, the nearest 
neighbor polygon (NNP) method overestimated the Fe grade at 38.53% while underestimating the 
tonnage at 14.757 million tonnes. This discrepancy highlights the tendency of the nearest neighbor 
polygon (NNP) method to overestimate grade due to lack of smoothing and spatial weighting. The 
results of the grade, volume, and tonnage estimation for all three methods are summarized in Table 

4. 

 
Table 4 Resource estimation and summary statistics of the OK, IDW, and NNP methods. 

 Resource Estimation  Statistics 

Grade 
(%) 

Volume 
(m3) 

Tonnage 
(tonnes) 

 Min Max Range Mean Median CV SD 

OK 
IDW 
NNP 

35.9 
35.53 
38.53 

5,723,145 
5,658,375 
4,919,024 

17,169,435 
16,975,126 
14,757,072 

 16.91 
16.99 
8.34 

51.71 
54.91 
60.32 

34.80 
37.92 
51.98 

35.00 
34.54 
35.17 

34.48 
34.04 
34.93 

0.12 
0.13 
0.24 

4.32 
4.36 
8.46 

 
4.5. Comparative Study 

The three estimation techniques - ordinary kriging (OK) geostatistical method, inverse distance 
weighting (IDW) method, and the nearest neighbor polygon (NNP) method - are compared using, 
grade-volume-tonnage results, summary statistics, visualization of grade blocks, and correlation 
coefficients. 

 

4.5.1. Comparison of grade, volume, and tonnage results 

The grade-volume-tonnage results of the ordinary kriging, inverse distance weighting, and nearest 
neighbor polygon methods are summarized in Table 4.  

The ordinary kriging method estimates of the grade, volume, and tonnage are 35.9%, 5,723,145 
m3, and 17,169,435 tonnes, respectively. The inverse distance weighting method estimates of the 
grade, volume, and tonnage are 35.53%, 5,658,375 m3, and 16,975,126 tonnes, respectively. The 
nearest neighbor polygon method estimates of the grade, volume, and tonnage are 38.53%, 
4.919,024 m3, and 14,757,072 tonnes, respectively. The difference in tonnage between the 
ordinary kriging and the inverse distance weighting method is 0.19 million tonnes, whereas the 
difference between the ordinary kriging method and the nearest neighbor polygon method is 2.41 
million tonnes. Generally, the grade, volume, and tonnage results of the ordinary kriging method 
are more closely comparable to the results of the inverse distance weighting method than those 
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of the nearest neighbor polygon method. This indicates greater similarity in results between OK 
and IDW, reflecting their comparable interpolation approaches. 

4.5.2 Comparison of summary statistics 

The summary statistics of the ordinary kriging (OK), inverse distance weighting (IDW), and nearest 
neighbor polygon (NNP) were compared using key parameters: minimum grade, maximum grade, 
range, mean, median, coefficient of variation (CV), and standard deviation (SD).  

OK and IDW reported comparable minimum grades of 16.91% and 16.99%, respectively, while NNP 
recorded a significantly lower minimum grade of 8.34%. The maximum grade values were 51.71% 
for OK, 54.91% for IDW, and a notably higher 60.32% for NNP. The range values were 34.79% (OK), 
37.93% (IDW), and 51.98% (NNP), with the broader range for NNP reflecting its extreme minimum 
and maximum values. The OK and NNP methods showed a more comparable mean of 35.00% and 
35.17%, respectively. The IDW mean grade is slightly lower, 34.54%. A median (50th percentile) of 
34.48 for the OK method, 34.04 for the IDW method, and 34.93 for the NNP method. A more 
comparable standard deviation of 4.32 for the OK method and 4.36 for the IDW method were 
reported, whereas the NNP method shows a higher standard deviation of 8.46. Similarly, the 
coefficient of variation (CV) values are more comparable for the OK method (0.12) and the IDW 
method (0.13), while the NNP has a considerably higher CV is 0.24, indicating greater variability. 

Although the NNP method showed a similar mean to the OK method, the IDW method performed 
better and showed more similarity to the OK method in other statistical parameters such as 
minimum grade, maximum grade, range, median, SD, and CV. This suggests that IDW provides 
results more comparable to OK, while NNP introduces greater variability and extremes in the grade 
distribution. The full summary statistics for these methods are detailed in Table 4. 

4.5.3 Visualization of grade blocks 

A visual comparison is made of the estimated grade blocks by the ordinary kriging, inverse distance 
weighting, and nearest neighbor polygon methods (Figure 7). Grade blocks are categorized by 
color: red represents grades above 30% Fe, yellow for grades between 25% to 30% Fe, green for 
20% to 25% Fe, and blue for grades below 20% Fe. The blocks of the three methods show increasing 
variation from OK to IDW to NNP. The Ok method predominantly features red blocks (Fe >30%) 
across the ore body, with few yellow blocks (25% - 30% Fe) concentrated in the northwest section. 
The IDW method is more closely aligned with the ordinary kriging geostatistical interpolation 
method, displaying a similar color pattern with only a micro introduction of green blocks or low-
grade blocks. In contrast, the NNP method introduces a significant number of lower-grade blocks, 
with a notable increase in green and blue areas throughout the ore body. This increased variability 
arises from the NNP method's approach of assigning the grade of the closest known sample to 
entire unknown blocks, resulting in a more pronounced underestimation of grades. The smoothing 
effect of OK method, which utilizes spatial correlation to estimate grades based on surrounding 
values, is evident in the more stable distribution of grades in OK compared to the more extreme 
values observed in NNP. OK method tends to moderate the variability of input data, producing 
estimates that are less variable than the original sample values (Chilès & Delfiner, 2012). The 
reduced variability is also reflected in the narrower range (34.79%) and lower standard deviation 
(4.32) compared to the inverse distance weighting method and the nearest neighbor polygon 
(NNP) method. The smoothing effect of ordinary kriging method enhances the stability and 
predictability of the model and also helps reduce the risk of overestimation or underestimation 
that might result from isolated high-grade making it a preferred method for global resource 
estimation (Bargawa & Tobing, 2020). 
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Figure 7 Comparism of estimated block model showing iron ore grades derived from Ordinary Kriging 
(OK), Inverse Distance Weighting (IDW), and Nearest Neighbor Polygon (NNP) interpolation method. 

4.5.4. Comparison of correlation coefficient 

The individual estimates of the three methods were correlated using a scatter plot and correlation 
coefficient value (Figure 8). Correlation coefficients illustrate the relationship between the 
estimation methods. The correlation coefficient of the ordinary kriging vs. inverse distance 
weighting method (Figure 8a) is 0.876, indicating a strong correlation between the two methods. 
The correlation between OK and nearest neighbor polygon (NNP) (Figure 8b) is 0.687, while the 
correlation between IDW and NNP (Figure 8c) is 0.720. 

The high correlation coefficient of 0.876 between OK and IDW suggests that these two methods 
produce more comparable results. In contrast, a lower correlation is shown for the other methods. 
The IDW-NNP estimates, with a correlation coefficient of 0.720, show a slightly higher degree of 
similarity than the OK-NNP estimates, which have a correlation of 0.687, suggesting that IDW 
method shares a marginally greater degree of similarity with NNP than OK does. 
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Figure 8 Scatterplot showing correlation between iron grade estimates from Ordinary Kriging (OK), 
Inverse Distance Weighting (IDW), and Nearest Neighbor Polygon (NNP) methods. (a) Ok versus IDW, 
(b) OK versus NNP, and (c) IDW versus NNP. 

4.6. Validation of Resource Estimates 

The slope of regression was used to evaluate the accuracy of the ordinary kriging (OK) method by 
comparing the actual grade with the estimated grade (Z/Z*). The goal is to have a mean slope of 
regression value equal to 1 or close to 1. Ideally, a mean slope of regression value equal to 1 or 
close to 1 indicates high estimation accuracy. As shown in Figure 9, a histogram of the calculated 
slope of regression values shows about 85% of the kriged estimates falling within the range of 0.5 
to 1, indicating good correlation. The mean slope of regression value for these estimates is 0.792, 
indicating a good level of accuracy. 

In addition, the three estimation methods - nearest neighbor polygon (NNP), inverse distance 
weighting (IDW), and ordinary kriging (OK) - were validated and compared using statistical 
measures: the coefficient of variation, standard error, and the global mean grade difference vs. 
model. Table 5 shows a standard error and the global mean grade difference vs. model %. The 
ordinary kriging method and inverse distance weighting method standard error is 0.105 and 0.106, 
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respectively, indicating high accuracy. In contrast, the nearest neighbor polygon had a higher 
standard error of 0.206, indicating reduced accuracy. Regarding global mean grade difference 
relative to the model, the inverse distance weighting method had the smallest deviation followed 
by the ordinary kriging method, while the nearest neighbor polygon shows the largest deviation. 
Generally, a global mean grade vs. model difference value that is less than 5% indicates high 
accuracy estimation. 

Table 5 Validation of estimation methods. 

 Validation Method 

Standard error % difference 
Global mean grade vs model 

OK 
IDW 
NNP 

0.105 
0.106 
0.206 

2.21% 
0.96% 
2.76% 

 
 

 
Figure 9 Histogram of slope of regression values used to validate Ordinary Kriging (OK) estimates for the 
Gofolo Hill deposit. 

 
5. Conclusion 
 
This study applied the ordinary kriging geostatistical method and the inverse distance weighting 
and nearest neighbor polygon traditional method to estimate the mineral resource of the Gofolo 
Hill iron ore deposit in Western Liberia. The ordinary kriging method estimated a total resource of 
17.169 million tonnes at an average grade of 35.90%, while the inverse distance weighting method 
estimated 16.975 million tonnes at an average grade of 35.53%, and the nearest neighbor polygon 
method estimated 14.757 million tonnes at an average grade of 38.55%.  

Comparative analysis of the three methods - using statistical analysis, visualization of grade blocks, 
resource estimates, and correlation coefficient – indicates that ordinary kriging is more precise. 
The inverse distance weighting method closely followed showing a strong consistency with OK 
(correlation coefficient: 0.876), while the nearest neighbor polygon method showed the least 
accuracy and precision and highest variability reflected in its broader range, higher standard 
deviation and coefficient of variation.  
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Validated by the standard error value close to zero and the percent mean grade difference vs. 
model below 5% confirmed the accuracy of all three methods. Additionally, the ordinary kriging 
method showed reliable predictions and a good correlation between estimated and actual grades, 
with a mean slope of regression value of 0.792.  

The findings highlight the importance of selecting the appropriate interpolation method in mineral 
resource estimation and demonstrate the effectiveness of geostatistical techniques in accurately 
modeling iron ore deposits. 
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